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Abstract. We present evidence for the absence of a gap in a class ofS = 1 antiferromagnetic
exchange models. The spin exchange is long ranged, of the type−(−1)i−j /|i − j |α where
1 < α < 3. We have shown previously that without the alternating factor the model for
α = 2 (the S = 1 Haldane–Shastry model) has a gap, exponentially decaying correlation
functions and exponentially small susceptibility at very low temperatures. In the case of the
alternating interaction the stabilizing next-nearest-neighbour ferromagnetic interaction changes
the behaviour of the system qualitatively. We have studied the ground state and first excited state
using a modified Lanczos algorithm for system sizes up to 16 sites. Also, we performed exact
diagonalization for systems up to 8 sites and obtained the thermodynamics. The correlation
functions decay with distance like a power law. These models define a new class of integer spin
chains that do not show a Haldane gap. The results may be relevant for describing impurity
spins coupled by a RKKY interaction through a half-filled conduction electron band.

1. Introduction

It was proposed long ago that integer and half-odd-integer spin chains behave qualitatively
differently [1]. The reason for this lies in a topological term in the action that prevails in the
latter case. On general grounds, half-odd-integer spin chains are gapless and integer spin
chains show a gap [2]. This leads to important differences in the correlation functions. In
the first case these show power-law behaviour and in the second case exponential behaviour.
There are however several models that do not follow this rule at special points in the space
of interactions. In the case whereS = 1, adding a quadratic term in the interaction and
requiring the models to be integrable, a SU(2)-invariant model [3] and a SU(3)-invariant
model (both solvable by the Betheansatz) [4] are gapless. Also, adding frustrating next-
nearest-neighbour (nnn) interactions to the Heisenberg model, it has been found that for
S = 1/2 there is a critical valueαcr ∼ 0.2411 (whereα = J2/J1 is the ratio of the nnn
interaction to the nearest-neighbour (nn) interaction) such that forα < αcr the spectrum is
gapless (as forα = 0) while for α > αcr a gap appears [5]. This has been interpreted as a
fluid–dimer transition. In particular, it has been shown that if the spin is half-odd-integer
and the ground state is translationally invariant (k = 0) the spectrum is gapless [6]. The
dimer phase is consistent with the Lieb–Schultz–Mattis theorem [7] which states that if the
spectrum is not gapless the ground state should be degenerate (for half-integer spin). Also,
recently it has been argued that translationally invariant spin chains in an applied field can
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be gapful without breaking translation symmetry, when the magnetization per spin,m, is
such thatS −m is an integer. It was then proposed that a Haldane gap phase can be found
for half-integer spin [8]. It has also been shown recently that theS = 1/2 dimer chain, the
Majumdar–Ghosh chain and theS = 1 Haldane chain are in the same phase [9].

Explicit tests of the validity of Haldane’s proposal have concentrated on models of
short-range interactions. Recently, we have extended this analysis to the case of long-range
interactions, considering theS = 1 Haldane–Shastry model [10, 11]. Even though we might
expect that the correlation functions should not decay faster than the interaction we found
a finite gap and the corresponding exponential decay of the correlation functions. This may
be the result of the frustrating nature of the interactions. The influence of frustration in the
S = 1 Heisenberg chain has also been studied recently [12].

The standard Haldane–Shastry model [13, 14] is a periodic version of 1/r2 exchange.
TheS = 1/2 case has attracted considerable attention [15, 16]. The ground-state energy and
the correlation functions have been obtained [15, 13, 14] together with the thermodynamics
[17]. The ground-state wavefunction is a spin singlet of the Jastrow–Gutzwiller form.
The excitations are spin-1/2 spinons [17] that form a gas of a semionic nature [17, 18].
The asymptotic correlations decay algebraically with exponentη = 1 without logarithmic
corrections, in contrast to the Heisenberg case. This indicates the absence of spin exchange
between the spinons rendering the models solvable in greater detail than in the short-
range Heisenberg counterpart, solvable by the traditional Betheansatzmethod. The zero-
T susceptibility is finite [17] (and numerically the same as for the Heisenberg model)
consistently with a singlet ground state and a gapless spectrum.

The S = 1 case is not integrable (for either model). In reference [10] we studied
the ground-state properties and the gap to the first excited state using a modified Lanczos
method for small systems of size up to 16 spins. We obtained that the ground-state energy
per spin is−1.267 894 and the value of the gap is 0.554 39 (recall that for the Heisenberg
model the gap has been estimated to be 0.410 50). The general trend of the ground-state
correlation functions is that they decay faster than those for the Heisenberg model (in the
sense that the numerical values are smaller) both with distance for fixedN and as a function
of the size of the system. The same happens for theS = 1/2 case where the spectrum
is gapless. A linear fit of logCN/2 as a function ofN yields a correlation length of the
order of ξ = 3.1. This is an underestimate due to finite-size effects. Also, we performed
complete diagonalization of systems up to eight sites to obtain the temperature dependence
of the susceptibility and correlation functions [11]. The susceptibility is exponentially small
at lowT and the correlation functions also decay faster than those for the Heisenberg model
as a function of temperature.

2. The model

In this work we consider a class of models of long-range interactions of the type 1/rα but
with alternating signs [16]. A simple and convenient way to implement periodic boundary
conditions is to use the chord distance (that is the distance between the points when the
chain is wrapped into a closed circle). We consider then the Hamiltonian [19]

H = −
∑
i<j

(−1)i−j
Si · Sj

[d(i − j)]α (1)

whered(i− j) is the chord distanced(i− j) = |sin(i− j)φ|/φ with φ = π/N , whereN is
the number of lattice sites in the chain. The leading term (nn) is antiferromagnetic but the
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next-nearest-neighbour term (nnn) is ferromagnetic which tends to stabilize the dominant
term. We take 1< α < 3.

This class of long-range spin exchange models may describe impurity spins in a metallic
host interacting via a RKKY interaction∼ cos[2kF r]/rα if the conduction electron band is
half-filled. The value of the exponentα in the case of non-interacting electrons isα = d
(whered is the dimensionality of the lattice). The case of interacting electrons has also been
considered. In the case of the magnetic screening cloud around a single Kondo impurity in
a Luttinger liquid (d = 1), α = gc < 1 [20] and in the case of the coupling between two
impurity spins (S = 1/2) coupled to a 1d Hubbard chain,α = 2 [21], for example.

To study model (1) we use the modified Lanczos algorithm [22] to obtain the ground-
state properties and the gap to the first excited state and we use complete diagonalization
of the Hamiltonian matrix to obtain the thermodynamics. In the modified Lanczos
algorithm the size of the vectors can be considerably reduced using the symmetries of
the problem. The Hamiltonian commutes with the total spin operators(ST )

2 and SzT ,
with the translation operatorT , the spin-flip operatorR and the reflection operatorL
(i → N + 1 − i, i = 1, . . . , N). The ground state has totalSzT = 0 and one of the
(degenerate) first excited states also hasSzT = 0. One can then immediately reduce the
states under consideration to this subspace only [10]. A similar procedure can be used for
the finite-temperature behaviour. We calculate the susceptibility

χ = β

3N

∑
i,j

〈Si · Sj 〉 (2)

and the correlation functions

Cm = 3

N

N∑
i=1

〈SZi Szi+m〉
S(S + 1)

. (3)

Both diagonalizations give the exact results for the various finite-size systems. The
results for the infinite system can be estimated using standard extrapolation methods [23]
like the VBS method [24] or the BST method [25]. In the first method we want to estimate
the limit of a finite sequencePn (n = 1, . . . , N). Defining

P (m+1)
n = P (m)n +

1

Q
(m)
n −Q(m)

n−1

(4)

Q(m)
n = αmQ(m−1)

n + 1

P
(m)

n+1− P (m)n

(5)

whereQ(−1)
n = 0, P (0)n = Pn, we obtain an estimate of the sequence iterating. Ifαm = 0

this is the Aitken–Shanks transformation which is adequate for exponential behaviour. To
generate the Padé–Shanks transformation we selectαm = 1. A power-law behaviour is well
fitted choosing the Hamer and Barber transformationαm = −[1 − (−1)m]/2. We get an
estimate of the asymptotic value of the sequencePn [23, 24] by selectingαm appropriately.

In the BST algorithm we look for the limit of a sequence of the typeT (h) =
T + a1h

ω + a2h
2ω + . . ., wherehN = 1/N is a sequence for the various system sizes,

N . The value of themth iteration for the sequence is obtained from

T (N)m = T (N+1)
m−1 + (T (N+1)

m−1 − T (N)m−1)
/[( hN

hN+m

)ω(
1− T

(N+1)
m−1 − T (N)m−1

T
(N+1)
m−1 − T (N+1)

m−2

)
− 1

]
(6)

whereω is a free parameter which is adjusted such that the estimate of the error

ε = |T (1)Np−2− T (0)Np−2| (7)



10690 P D Sacramento and V R Vieira

0 0.05 0.1 0.15 0.2 0.25
1/N

0.0

0.5

1.0

1.5
G

ap

Positive
Alternated

α=1.01

2

3

3

2

1.01

1.01

Figure 1. The gap as a function
of 1/N for the standard frustrating
interaction (positive) and model (1)
(alternating) for the valuesα =
1.01, 2, 3.

is a minimum (whereNp is the number of data points,T (N)−1 = 0 andT (N)0 = T (hN)). It
has been shown [25] that this algorithm has several advantages over the VBS algorithm,
in particular for smaller sequences: it converges faster and it is less sensitive to rounding
errors. In this paper we will use both methods to estimate the thermodynamic limit.

Table 1. The ground-state energy per spin and gap as functions ofN for α = 1.01, 2, 3.

α = 1.01 α = 1.01 α = 2 α = 2 α = 3 α = 3
N −EN/N Gap −EN/N Gap −EN/N Gap

4 2.059 5832 1.111 8877 2.158 9760 1.233 7006 2.297 6817 1.370 2968
6 2.359 5499 0.889 9970 2.052 3213 0.848 0498 1.917 9450 0.854 1843
8 2.581 1593 0.736 3615 2.000 5515 0.654 0099 1.767 2689 0.640 2738

10 2.758 0452 0.635 9315 1.970 7343 0.535 3366 1.692 0636 0.523 2326
12 2.905 6771 0.561 6502 1.951 6741 0.454 5769 1.649 0979 0.449 1504
14 3.032 5603 0.504 2410 1.938 5998 0.395 7728 1.622 2435 0.397 9216
16 3.143 9108 0.458 4054 1.929 1615 0.350 9020 1.604 3433 0.360 3571

3. Results

In table 1 we show the values for the ground-state energy and gap as functions ofN (for
N = 4 to 16 andN even) for the valuesα = 1.01, 2, 3 [26]. In figure 1 we show the gap as
a function of 1/N for the standard frustrating case compared to the behaviour of the gap in
the alternating case. The results suggest that these two cases are in different classes since
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Figure 2. The gap and estimate of the error as a function ofω for model (1) for the values
α = 1.01, 2, 2.3, 2.5, 2.7, 3.

the slopes for the two cases are distinct. In particular, it suggests that the alternating cases
may extrapolate to a zero value of the gap asN →∞ while the standard frustrating cases
suggest a finite value in agreement with the results previously obtained forα = 2 [10]. In
table 2 we show the VBS estimated values for the gap using the various extrapolations. For
small and intermediate values ofα the power-law fit (Hamer and Barber) consistently gives
very small gaps suggesting that the spectrum is gapless. Asα grows further (α > 2.7) we
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Figure 2. (Continued)

see that the gap increases and becomes apparently finite (we will return to this point later).
The table shows consistently smaller gaps for the power-law fit as compared to the other
two methods. If the spectrum is indeed gapless this is consistent since, for instance for
the Aitken–Shanks transformation, one is trying to fit a power law with an exponential. In
tables 3–5 we present the sequence ofP (m)n obtained using the Hamer–Barber algorithm for
α = 2, 2.5, 3. The difference between the extrapolated value and the values for the previous
iteration gives a measure for the error involved. Due to the small number of data points
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this difference is actually an order of magnitude larger than the extrapolated value itself
(except forα = 3). Another possible criterion is to take the difference between the values
for m = 2, but is also of the same order. The error in this procedure is therefore large.

To further clarify the nature of the spectrum and to have better control over the errors
involved we consider now the BST algorithm, equation (6). In figure 2 we present the values
of the gap as a function of the free parameterω for the various values ofα considered above.
We also plot the errorε defined in equation (7). In general, for each value ofα there are
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Figure 3. The gap and estimate of the error as a function ofω for the standard frustrating
interaction (the Haldane–Shastry model).

Table 2. Extrapolated values of the gap obtained using the VBS method.

αm = −[1− (−1)m]/2 αm = 1 αm = 0

α = 1.01 0.0658 0.2004 0.1254
α = 2.0 −0.0142 0.1491 0.0742
α = 2.3 0.0041 0.1571 0.0829
α = 2.5 0.0065 0.1677 0.0925
α = 2.7 0.0862 0.1850 0.1268
α = 3.0 0.1701 0.2202 0.1845

Table 3. Extrapolation iterations for the gap forα = 2 obtained using the Hamer–Barber
algorithm.

m: 0 1 2 3

1.233 7006
0.848 0498 0.457 5103
0.654 0099 0.348 4716 0.181 7683
0.535 3366 0.282 5508 0.147 7233−0.014 1768
0.454 5769 0.238 2768 0.124 4493
0.395 7728 0.206 4011
0.350 9020

several points inω-space where either the gap or the error go to zero or become very small.
For each value ofα there is a point (actually a narrow region) whereboth are very small.
First we take the value ofω where the gap is very small and estimate its error, calculatingε

at that point. In table 6 we give the errorε at the values ofω chosen above for the values of
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Figure 4. (a) The correlation functionsC(m) as functions ofm for N = 16 andα = 2 for
the Haldane–Shastry model (HS) and for model (1). (b) The correlation functionsC(m) for
m = 1, 2, 3, 4 for α = 2 as functions ofN .
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Table 4. Extrapolation iterations for the gap forα = 2.5 obtained using the Hamer–Barber
algorithm.

m: 0 1 2 3

1.300 2061
0.847 8680 0.470 7043
0.642 1958 0.360 7076 0.198 8730
0.523 3554 0.295 2211 0.164 0630 0.006 4759
0.445 2184 0.251 5429 0.140 6424
0.389 5432 0.220 2066
0.347 6438

Table 5. Extrapolation iterations for the gap forα = 3 obtained using the Hamer–Barber
algorithm.

m: 0 1 2 3

1.370 2968
0.854 1843 0.488 8593
0.640 2738 0.381 8190 0.243 082
0.523 2326 0.321 3966 0.216 709 0.170 0793
0.449 1504 0.283 0859 0.202 198
0.397 9216 0.257 0883
0.360 3571

Table 6. Values of the errorε defined in equation (7), for several values ofα, calculated at the
values ofω at which the gap goes through zero (smaller than 1.0× 10−6) and whereε is also
small.

α ω Error (ε)

1.01 0.846 448 0.000 68
2.0 0.962 115 0.000 17
2.3 0.890 129 0.000 66
2.5 0.768 180 0.001 58
2.7 0.590 684 0.000 05
3.0 0.534 526 0.013 18

α. We can also follow the standard method and select several local minima forε and take
the gaps obtained at these points. The results are shown in table 7. They strongly suggest
that the spectrum is gapless (at least forα 6 2.7). The BST method is consistent with the
VBS method forα = 3 in the sense that it suggests a finite gap (see however below).

Even though the results strongly suggest that the spectrum is gapless, it might appear
that table 2 could be consistent with a finite gap (but a small one compared to that for the
frustrated case [10]). However, if the gap were to be finite, the Hamer–Barber algorithm
should yield a finite gap, as we obtained previously for the frustrated case [10], where all
three algorithms correctly picked up the leading (finite) term of the sequence (see table 4 of
reference [10]). As a further check we have used the BST algorithm to find the extrapolated
gap for the standard Haldane–Shastry model (α = 2, the frustrated case). The results are
shown in figure 3. As a function ofω the error decreases forω ∼ 2 and the gap is saturated
to the value 0.554 05 (forω = 2) very close to the (finite) result obtained previously [10].
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When there is a true gap the extrapolation yields a finite value with a magnitude that is very
close for thefour algorithms (actually one might take the discrepancy of the extrapolations
of table 2 as a sign that the gap is zero—i.e. there is no finite leading term in the sequence).
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Figure 5. The susceptibility as a function of temperature forα = 2 for N = 4, 5, 6, 7, 8.

Table 7. Minima of the errorε, equation (7), for several values ofα and the corresponding
values of the gap. The minima ofε (smaller than 1.0× 10−5) that are close to the set of values
of ω shown in table 6 are highlighted in bold type. The absolute values of these results for the
gap are the error estimates within the method.

ω1 Gap ω2 Gap ω3 Gap

α = 1.01 0.810 −0.007 4257 0.864 0.007 9885 1.077 0.025 4297
α = 2 0.886 −0.006 7272 0.955 −0.000 7323
α = 2.3 0.733 −0.023 9250 0.928 0.003 4268
α = 2.5 0.622 −0.029 1923 0.883 0.010 9872
α = 2.7 0.500 −0.016 3724 0.592 0.000 2422 1.213 0.071 3413
α = 3 0.914 0.103 3700 1.445 0.145 8258

In table 8 we present the ground-state correlation functions forα = 2. In figure 4(a) we
show the ground-state correlation functions forα = 2 andN = 16 for both cases showing
that the decay is considerably slower in the alternating case. In figure 4(b) we show the
correlation functionsC(m) for m = 1–4 as functions ofN for α = 2. The behaviour
of |C(1)| is similar for the positive and alternating interactions (it is slightly smaller in
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Table 8. The correlation functionsC(m) for α = 2 for the set of valuesN = 4 to 16 withN
even.

m N : 4 6 8 10 12 14 16

1 −0.750 00 −0.705 02 −0.687 49 −0.678 51 −0.673 18 −0.669 70 −0.667 28
2 0.500 00 0.483 40 0.477 98 0.475 60 0.477 36 0.473 63 0.473 17
3 −0.556 77 −0.518 69 −0.503 16 −0.495 00 −0.490 08 −0.486 83
4 0.456 41 0.446 01 0.440 94 0.438 10 0.436 34
5 −0.479 88 −0.463 42 −0.454 58 −0.449 17
6 0.432 60 0.425 65 0.421 56
7 −0.446 04 −0.436 47
8 0.417 37
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-0.5
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0.5
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)

Haldane-Shastry
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2

3

4

m=1

2

3

4

Figure 6. The correlation functionsC(m) as functions of the temperature for the Haldane–
Shastry model and for model (1) forN = 8.

the latter case). However, form > 1 the correlation functionsCalt (m) are considerably
larger and reach their extrapolated values for much smaller system sizes. We estimate the
correlation function exponent takingC(N/2) ∼ (−1)N/21/Nη [8] since for the system sizes
considered it yields better results than a plot ofC(m) as a function ofm for fixedN [8]. We
estimateη = 0.16, 0.24, 0.49, for α = 1.01, 2, 3, respectively (taking a fit using the system
sizes up toN = 16 and excluding theN = 4 point). Besides the alternating signal, the
correlation functions are modulated by an oscillatory function that decreases in amplitude
asN grows. Note that|Calt (2m+ 1)| > |Calt (2m)| for m > 1 due to the oscillatory nature
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Figure 7. The correlation functionC(N/2) as a function of the temperature forN = 8 and
α = 1.01, 2, 3.

of the interaction (in figure 4(b) this is explicitly shown for|C(3)| > C(2)).
In figure 5 we show the susceptibility as a function of temperature forα = 2. For

N even, the ground state is a singlet, but forN odd, is degenerate (a triplet) (as for the
S = 1/2 Heisenberg model). Thereforeχ alternates between zero and very large values
at smallT . Comparing with results obtained for other models (like the Heisenberg and
the Haldane–Shastry models for integer and half-integer spins) this alternation suggests a
gapless spectrum (in the case of a gap both the even and odd system sizes give a vanishing
susceptibility at zero temperature). This would imply a finite value for the susceptibility (the
extrapolation error is large and we do not estimate the zero-T susceptibility). Asα→ 3 we
find the same type of behaviour indicating that there is no true gap and that the extrapolated
results are a consequence of the finiteness of the systems studied. The reason for this is
that the decay of the interaction is faster (and therefore the transition to gapless behaviour
is slower) and the finite sizes considered are not large enough to correctly extrapolate to
zero.

In figure 6 we show the correlation functions as functions ofT for the positive case and
the alternating case forα = 2. Consistently with the ground-state results, the correlation
functions also decay much more slowly with temperature in the alternating case. In figure 7
we showC(N/2) for N = 8 for several values ofα.

In summary, we have identified a new class of integer spin chains that are gapless.
The interaction is long ranged and non-frustrating. Indeed, the stabilizing ferromagnetic
next-nearest-neighbour interaction changes the behaviour of the system qualitatively with



10700 P D Sacramento and V R Vieira

respect to an antiferromagnetic frustrating nnn interaction [10, 11]. We calculated the gap
(for S = 1) using a modified Lanczos method, finding a vanishing value in the extrapolated
limit. We also found that the correlation functions have a considerably larger range both
with distance and as a function of temperature. The results obtained may be useful for
studyingS = 1 impurity spins embedded in a half-filled conduction electron matrix and
coupled via a RKKY interaction.
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